MINISTRY OF AGRICULTURE AND RURAL DEVELOPMENT VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE

BACHELOR OF SCIENCE IN BIOTECHNOLOGY COURSE SPECIFICATION SH03052: BIOTECHNOLOGY IN ANIMAL BREEDING

I. Information about the course

- Course code: SH03052
- o Semester: 07
- \circ Number of credits: 2 (2; 0; 6)
- Credit hours for learning activities
- + Theoretical lessons in the class: 45 periods
- Self-studying: 90 periods (according to individual plans, and based on the lecturer's instructions)
- Units in charge:
 - Department: Animal Biotechnology
 - Faculty: Biotechnology
- The course belongs to the following knowledge group:

General kr	owledge □	Foundation knowledge		Specialized knowledge 🗵	
Compulsory	Elective	Compulsory	Elective	Compulsory	Elective
					\boxtimes

- Prerequisite course: Human and Animal Biology (SH02002)
- Language used for teaching: Vietnamese

II. Course objectives and course expected learning outcome

* The objectives of the course:

The course aims to provide students with the following knowledge:

+ Scientific basis, development and new achievements in the field of biotechnology in animal breeding, including:

- ✓ Concepts and principles of animal selection-breeding;
- ✓ Traditional technology in animal breeding;
- ✓ Genetic engineering applied in animal breeding;
- ✓ Genetically modified animals.

The course aims to provide students with the following skills:

+ Apply creative critical thinking in collecting, analyzing, evaluating, selecting and synthesizing specialized documents.

+ Working and reporting project.

The course helps students develop the following qualities:

+ Active and creative; eager to learn; conscious accumulation of knowledge and lifelong self-learning.

* The Expected Learning Outcomes for the Bachelor of Biotechnology program

	Expected learning outcomes (ELOs) of the Bachelor of Science in Biotechnology program	Cognitive level
Upon graduat	tion, graduates would be able to:	
General	ELO1: Apply knowledge of mathematics, social sciences, natural sciences, laws, and contemporary issues into the field of biotechnology.	Apply
Knowledge	ELO 2: Analyze the needs and requirements of stakeholders for the purposes of management, production, and sales of biotechnology products.	Analyze
Professional	ELO3: Evaluate the quality of biotechnology products with regard to biosafety standards, environmental protection, legal, and ethical standards.	Evaluate
Knowledge	ELO4: Develop ideas for biotechnology products based on personal knowledge of natural sciences, life sciences, and analysis of social needs.	Create
	ELO5: Design production models for biotechnology products	Create
	ELO6: Apply critical and creative thinking skills to effectively solve issues related to research, technology transfer, and production in the field of biotechnology.	Adaptation
General Skills	ELO7: Coordinate with team members to achieve set goals, either as a team member or team leader.	Origination
SKIIS	ELO8: Communicate effectively through various channels in the diverse contexts of the workplace; satisfy English proficiency levels as required by the Ministry of Education and Training.	Origination
	ELO9: Utilize information technology and equipment effectively for management, production, and sales in the field of biotechnology.	Adaptation
Professional Skills	ELO10: Use appropriate methods and skills to collect, analyze, interpret data in scientific research, and examine practical issues at the workplace.	Adaptation
	ELO11: Perform basic and intensive technical procedures fluently in the field of biotechnology	Adaptation
	ELO12: Advise customers and partners on biotechnology products with a positive business perspective.	Adaptation
	ELO13: Comply with the laws of the biotechnology industry, and conform to occupational safety principles at the workplace.	Valuing
Attitude	ELO14: Maintain professional ethics, fulfill one's duty to improve the well-being of the society, and protect the environment.	Valuing
	ELO15: Perform the habits of updating knowledge and experiences to improve one's professional qualifications	Characterizing

* *Course expected learning outcomes (CELOs):* The course contributes to the expected learning outcomes of the program at the following levels: *I - Introduction); P -Practice; R - Reinforce; M –Master*

Course code	Course name	Contribution level towards the expected learning outcomes of the program	
----------------	----------------	--	--

SH03052	Biotechnology in animal	ELO1	ELO2	ELO3	ELO4	ELO5	ELO6	ELO7	ELO8
	breeding		R				R		
		ELO9	ELO10	ELO11	ELO12	ELO13	ELO14	ELO15	
			R		R		Р	R	

Code	Course expected learning outcomes	ELOs of the
	Upon completion of this course, students are able to:	program
Knowledge	e	
CELO1	 Analyze the needs and requirements of stakeholders for biotechnology products for management, production and business. Analyze the following issues: ✓ Concepts and principles of animal selection-breeding; ✓ Traditional technology in animal breeding; ✓ Genetic engineering applied in animal breeding; 	ELO2
	✓ Genetically modified animals.	
Skills		
CELO2	Apply critical and creative thinking to effectively solve research, technology transfer and production problems in the biotechnology industry.	ELO6
CELO3	Apply methods and skills to collect, analyze and process information in scientific research and investigate problems of professional practice.	ELO10
CELO4	Advise customers and partners on biotechnology products with a positive business perspective.	ELO12
CELO5	Maintain professional ethics, fulfill one's duty to improve the well-being of the society, and protect the environment.	ELO14
Attitude		
CELO6	Make a habit of updating knowledge and experience to improve your professional level.	ELO15

III. Summary of course content

SH03052. Biotechnology in Animal Breeding: 2 credits (2–0–6).

- Chapter 1: Introduction
- Chapter 2: Concepts and principles of animal breeding
- Chapter 3: Traditional technology in animal breeding
- Chapter 4: Genetic engineering applied to animal breeding
- Chapter 5: Genetically modified animals

IV. Teaching and learning methods

1. Teaching methods

- ✓ Lecturing method
- \checkmark Teaching with videos
- ✓ Online-Teaching MSTeams-Vnua

2. Learning methods

- \checkmark Listen to lectures in class
- ✓ Join the project team
- ✓ Online learning (E-learning) MSTeams-Vnua

V. Requirements for students

- Attend class (classroom class or online class-MSTeams-Vnua): Students must attend the class fully according to the regulations of the University, participate in expressing opinions, discussing and developing articles.

- Preparing for the lecture: Students attending this module are required to read the lecture and reference materials before learning related content.

- 15-minute exercises and tests (if any): Students must complete the exercises and tests in 15 minutes.

- Essays (if any): Students must fully prepare essays, participate in discussions and pass tests.

- Must take the midterm exam, the final exam and must pass the requirements.

- For online learning: students need to install learning software and fulfill the teacher's requirements for online learning.

VI. Scoring and assessment

1. Scale: 10

2. The average score of the course is score of each rubric multiplying with the corresponding weight of each rubric

✓ Rubric 1 - Attendance: 10%

- ✓ Table 1 Mid-term exam score: 30%
- ✓ Table 2 Final exam score: 60%

3. Assessment methods

The criteria, rubrics, and assessment methods	CELOs to be assessed	Percentage (%)	Time / Studying week
Progress assessment		40	
Attendance (Rubric 1)	K1, K2, K3, K4, K5, K6	10	Week 1 to week 13
Mid-term exams (Table 1)	K1	30	Week 7 or week 8
End-of-course assessment		60	
Final exam (Table 2)	K1	60	At least 2 weeks after the end of the course

Rubic 1: Attendance class

		Excellent	Good	Average	Poor
Criteria	Percentage	8.5 - 10 points	6.5 - 8.4 points	4.0 – 6.4 points	0 – 3.9 points
	_	(A)	(C+, B, B+)	(D, D+, C)	(F)
Participation		Participation \geq	Participation	Participation	Participation
time	50%	19 periods	14-18 periods	9-13 periods	<9 periods
		(4.5 -5.0đ)	(3.5 - 4.0 đ)	(2.0 - 3.0đ)	(0 - 1.5đ)
Participation		Actively	Not really	Occasionally	Rarelly
attitude	50%	participate	actively	participate	participate
		(4.5 - 5.0đ)	participate	(2.0 - 3 .0đ)	(0- 1.5đ)
			(3.5 - 4.0 đ)		

Table 1: Criteria and contents for assessment of mid-term exams (Maximum score of 10/10)

CELOs that are assessed	Exam content	Performance indicator
through the		(Students are required to perform and be evaluated
exam		based on these indicators)

K1	Chapter 1: Introduction	Indicator 1: Present and analyze the role of
Apply basic		biotechnology in animal breeding
knowledge to		
analyze	Chapter 2: Concepts	Indicator 2: Present and analyze the concepts and
problems in the	and principles of	principles of animal selection and breeding
field of	animal breeding	
biotechnology in		
animal breeding	Chapter 3: Traditional	Indicator 3: Present and analyze traditional
	technology in animal	technology in animal selection and breeding
	breeding	

The form of essay or multiple-choice exam, thematic; online or at the exam room according to the University's regulations.

 Table 2: Criteria and contents for assessment of final exams (Maximum score of 10/10)

CELOs that are assessed through the exam	Exam content	Performance indicator (Students are required to perform and be evaluated based on these indicators)
K1	Chapter 1: Introduction	Indicator 1: Present and analyze the role of
Apply basic knowledge to		biotechnology in animal breeding
analyze problems in the field of biotechnology in	1 1	Indicator 2: Present and analyze the concepts and principles of animal selection and breeding
animal breeding	Chapter 3: Traditional technology in animal breeding	Indicator 3: Present and analyze traditional technology in animal selection and breeding
	Chapter 4: Genetic engineering applied to animal breeding	Indicator 4: Present and analyze genetic techniques applied in animal breeding
	Chapter 5: Genetically modified animals	Indicator 5: Present and analyze the Genetically modified animals

The form of essay or multiple-choice exam, thematic; online or at the exam room according to the University's regulations.

4. Requirements of the course

- ✓ Late submission: Late submission of assignments, discussions, and essays will result in a 50% deduction of marks.
- \checkmark Taking exams: Failure to participate in any test will result in a score of 0 for that test.
- ✓ Ethical requirements: According to the requirements of the Vietnam National University of Agriculture.

VII. Textbook / reference materials

* Textbook /Lectures:

1. Nguyen Hoang Thinh, Nguyen Chi Thanh, Chu Tuan Thinh (2018). Textbook of Animal Genetics. Agricultural Academy Publishing House.

2. Dang Thai Hai, Ngo Thi Thuy, Bui Huy Doanh (2017). Textbook of Animal Biochemistry. Agricultural University Publishing House.

3. Vo Thi Thuong Lan (2017). Textbook of Cellular and Applied Molecular Biology. Vietnam Education Publishing House.

Reference materials:

1. Tran Thi Binh Nguyen, Nguyen Huu Duc, Vu Duc Quy, Pham Thu Giang, Nguyen Manh Linh, Dinh Thi Ngoc Thuy and Nguyen Thi Dieu Thuy (2018). Polymorphism Candidate Genes of Indigenous Lien Minh Chickens. Vietnam Journal of Agricultural Sciences, 1(2): 174-181.

2. Bui Ha My, Nguyen Thi Huong, Nguyen Huu Duc, Tran Thi Thuy Ha (2018). Study of genetic diversity of the spotted pompano (Hemibagrus guttatus Lacepede, 1803) using microsatellite markers. Journal of Biotechnology, 16(1): 59-65.

3. Nguyen Ngoc Chinh, Ha Duy Ngo, Nguyen Huu Duc, Nguyen Thuy Linh, Pham Ngoc Doanh (2018). Morphological and molecular characteristics of Kudoa comberomori (Myxosporea: Kudoidae) were first recorded in Scomberomorus guttatus (Scombridae) in coastal waters of Quang Binh province. Journal of Biology, 40(1): 1-6.

4. Tran Thi Binh Nguyen, Nguyen Huu Duc, Nguyen Thi Dieu Thuy (2018). Prolactin gene polymorphisms related to egg production in Lien Minh chicken breed. Journal of Biotechnology 16(2): 259-266.

5. Vu Thi Trang, Le Thi Quynh Chi, Chu Chi Thiet, Nguyen Huu Duc, Tran Thi Thuy Ha (2018). Genetic relationship of asiatic hard clam populations collected in northern coastal provinces in Vietnam based on mtDNA sequence analysis. Journal of Aquaculture & Marine Biology, 7 (1): 55-59.

* Online references:

Impact of Biotechnology on Animal Breeding and Genetic Progress.

https://www.researchgate.net/publication/227140145_Impact_of_Biotechnology_on_Animal_Br eeding_and_Genetic_Progress

Week	Content	CELOs
	Chapter 1: Introduction	K1, K2, K3,
		K4, K5, K6
	A/ Main content in class: (02 periods)	
	Theoretical content:	
	1.1. Introduction	
	1.2. Research history and some typical achievements	
	1.2.1 The development of livestock breeds in the world	
	1.2.2 Breeding and breeding livestock in Vietnam	
	B/ Contents to be self-study at home: (06 periods)	
	Read the syllabus, lectures and find out information related to the	
	content of the chapter.	
	Chapter 2: Concepts and principles of animal breeding	K1, K2, K3,
		K4, K5, K6
	A/ Summary of the main content in class: (06 periods)	
	Theoretical content:	
	2.1. The concept of breed and lineage of livestock	
	2.2. Applied genetic parameters in livestock breeding	
	2.2.1. Heredity coefficient	
	2.2.2. Genetic correlation coefficient	
	2.2.3. Repeat coefficient	
	2.2.4. Selective effect	
	2.2.5. Selective statistics	
	2.2.6. Selective intensity	
	2.2.7. Generation gap	
	2.3. Selection and mating pairing	

VIII. Teaching plan

Week	Content	CELOs
	 2.3.1. Pedigree and closed relatives 2.3.2. Additive genetic relationship 2.3.3. Inbreeding coefficient 2.3.4. Selection of livestock for breeding 2.3.5. Discard livestock 2.3.6. Estimating breed value - introducing the BLUP method 2.4. The concept of growth, reproduction and productivity of livestock 2.4.1. The concept 2.4.2. Laws, influencing factors, growth and development 2.4.3. Methods of assessing fertility indicators 2.4.4. Production capacity of livestock (production of milk, meat, eggs) 	
	B/ The contents to be self-study at home: (18 periods)	
	Read the syllabus, lectures and find out information related to the content of the chapter.	
	Chapter 3: Traditional technology in animal breeding	K1, K2, K3, K4, K5, K6
	 A/ Summary of the main content in class: (06 periods) Theoretical content: 3.1. General principles of creating new varieties 3.2. Hybridization methods for the purpose of creating new varieties 3.2.1. Improved hybrid (topcrossing) 3.2.2. Grading up 3.2.3. Crossing (crossing) 3.3. Mutational Methods 3.3.1. Chromosomal mutation 3.3.2. Gene mutation B/ Contents to be self-study at home: (18 periods) Read the syllabus, lectures and find out information related to the content of the chapter. 	K1, K2, K3,
	Chapter 4: Genetic engineering applied to animal breedingA/ Summary of the main content in class: (12 periods)	K4, K5, K6
	 Theoretical content: 4.1. Molecular markers in animal breeding – MAS 4.1.1. Molecular marker definition 4.1.2. Types of molecular markers 4.2. Identification of marker loci 4.2.1. Candidate gene approach 4.2.2. Line strategy 4.3. Identification of genes that affect the trait 4.4. Application of marker information or marker gene 4.4.1. Genetic assessment 4.4.2. Selection within a breed 4.4.3. Breeding Program 4. 5. Important marker genes in animal breeding 4.5.1. Genes involved in lactation 4.5.2. Genes involved in meat production 	

Week	Content	CELOs
	4.5.3. Genes involved in egg production	
	B/ Contents to be self-study at home: (36 periods)	
	Read the syllabus, lectures and find out information related to the	
	content of the chapter.	
	Chapter 5: Genetically modified animals	K1, K2, K3, K4, K5, K6
	A/ Summary of the main content in class: (04 periods)	
	Theoretical content:	
	5.1. Concepts and principles of animal transgenic engineering	
	5.2. Random animal transgenic engineering	
	5.3. Direct genetic engineering - gene transfer	
	5.3.1. Biological principles of animal transgenic engineering	
	5.3.2. Extraction, isolation and assembly of gene expression in	
	animal cells	
	5.3.3. Transgenes into cells	
	5.3.4. Test animals created from transgenic embryos	
	5.3.5. Meaning and some achievements of animal gene transfer in	
	breeding	
	B/ Contents to be self-study at home: (12 periods)	
	Read the syllabus, lectures and find out information related to the content of the chapter.	

IX. Lecturer requirements for the course:

- Classrooms: required to have enough tables, chairs, boards, chalk, light, ventilation, and hygiene.

- Teaching facilities: projectors, speakers, internet, E-learning.

- E-learning: online teaching software (MSTeams), computers, server systems and infrastructure connecting to the Internet with bandwidth to meet user requirements, without network congestion or overload. Online classrooms are full of light, soundproof, well-ventilated, tidy, neat and clean.

X. Revisions (The course specification is revised annually according to the regulations of the University)

- 1st revision: 7/2018
- 2nd revision: 7/2019
- 3rd revision: 7/2020

HEAD OF DEPARTMENT

(*Name and signature*)

Hanoi, July 29th, 2020 LECTURER (Name and signature)

Nguyen Huu Duc

Nguyen Huu Duc

DEAN (Name and signature)

ON BEHALF OF THE PRESIDENT VICE PRESIDENT

APPENDIX INFORMATION ABOUT LECTURERS WHO ARE TEACHING THE COURSE

Lecturer in charge of the course

1. Full name: Nguyen Huu Duc	Title / Degree: PhD.
Workplace address: Trau Quy, Gia Lam, Hanoi	Phone no.: 0399606099
Email: <u>nhduc@vnua.edu.vn</u>	Website: http://www.vnua.edu.vn/khoa/cnsh/index.php/vi/

Students can contact the lecturers teaching the course through the following ways:

- 1. Phone calls;
- 2. Writing emails to the lecturers;
- 3. Arrange a meeting with the lecturer;
- 4. Meet and discuss with the instructor during office hours as provide by the instructor.

Supporting lecturer

2. Full name: Tran Thi Binh Nguyen	Title / Degree: PhD.		
Workplace address: Trau Quy, Gia Lam, Hanoi	Phone no.: 0944661010		
Emoil, tthe average Querry adv up	Website:		
Email: ttbnguyen@vnua.edu.vn	http://www.vnua.edu.vn/khoa/cnsh/index.php/vi/		
Students can contact the lecturers teaching the course through the following ways:			
1 Dhanna an llan			

1. Phone calls;

2. Writing emails to the lecturers;

3. Arrange a meeting with the lecturer;

4. Meet and discuss with the instructor during office hours as provide by the instructor.